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Motivation

• Convectively-induced 
turbulence (CIT) can propagate 
more than 100 km (62 mi) away 
from convective sources

• Out of cloud

• Forecasting of CIT is a 
challenge because convection 
must be accurately simulated

• CIT due to developing convection
• Midlatitude continental convection 

versus tropical oceanic convection

2

Courtesy of A. Karboski

Zovko-Rajak and Lane 2014; Lane and Sharman 2014; Lane et al. 2012; Lane et al. 2003; Pantley 1989 
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Research Questions
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• What is the role of developing 
convection in a severe turbulence 
case?

• Tropical oceanic convective simulation

• How does resolution influence 
turbulence prediction?

• Midlatitude continental convective 
simulations

Courtesy of A. Karboski
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Tropical Oceanic Case
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• 20 June, 2017
• Severe turbulence

• 1651 UTC at 11 km (36 kft)
• 80 nm NE of Cancun, MEX
• 9 injuries

• Active convection
• Developing cells

• Tropical oceanic region

In-Situ Observations

Surface Analysis 1500 UTC

What was the spatial coverage and 
intensity of turbulence near developing 

convection?
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Methodology
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• Weather Research and Forecast (WRF) v3.9
• 3 km horizontal grid spacing, 100 vertical levels
• Initialized with ¼ degree GFS data

• Turbulence diagnostics
• Richardson number (Ri) 

• Stability and shear

• Model derived eddy dissipation rate (ε1/3 )
• Turbulent kinetic energy

• Second-order structure functions (SF)
• u and v velocity components 

Ahmad and Proctor 2012; Frehlich and Sharman 2004a, b
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Observations vs. Simulation 
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Simulated Cloud Top TemperaturesGOES-16 Cloud Top Temperatures
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Tropical CIT
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• Ri
• Most turbulence is out-

of-cloud

• Log of ε2/3 (SF) and 
ε1/3 (SF) 

• Most turbulence is out-
of-cloud

• Highest values are 
near convection

• Moderate-severe

• ε1/3 model derived
• Under-predicted 

intensity and areal 
coverage

Richardson Number log of ε2/3 (SF)

ε1/3 (SF)ε1/3 (model derived)

─ echo top = 11 kmz = 11 km
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Developing Convection
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• Convective objects: 
Echo top heights ≥ 8 
km (26 kft)

• Maximum vertical 
velocity increasing 
with time and < 90th

percentile of vertical 
velocities 

• Closest convective 
object to turbulent 
grid cell
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Developing Convection
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• More turbulence is associated 
with mature and dissipating 
convection

• Highest intensity of turbulence 
is associated with developing 
convection at 10 km in altitude

• Convective object closest to 
severe turbulence had rapid 
development 

• 9 m s-1 increase in vertical velocity
• 3 km (~10 kft) increase in storm 

height Intensity →
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Discussion
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• Turbulence diagnostics (uncalibrated)
• Richardson number: Turbulence was predicted near convection
• EDR: Under-predicted turbulence
• Structure functions: Predicted severe turbulence near convection

• Greatest areal coverage of turbulence is associated with 
mature/dissipating convection

• Most intense turbulence is associated with developing convection
• Increased hazard for aviation operations

More research on developing convection and turbulence is needed
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Research Objective II
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• How does model resolution influence the 
distribution of turbulence? 

• Current operational turbulence forecast 
systems are now running on a 3 km 
horizontal grid spacing 

• Indices are being scaled for finer grid spacing

• Turbulence that influences aviation 
occurs on scales of 10-1000 m 

Sharman and Pearson 2017; Pearson and Sharman 2017; Lester 1994 

Courtesy of A. Karboski

Barber et al. 2018 JAMC
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Methodology

• Numerical simulations of convection 
in northern Great Plains using WRF

• 10-17 July 2015

• Turbulence diagnostics
• Model derived eddy dissipation rate (ε1/3)

• Turbulent kinetic energy

• Ellrod Index
• Convergence, deformation, and vertical 

wind shear

12

Ellrod and Knapp 1992; Ahmad and Proctor 2012

Model Horizontal grid 
spacing 

Mean vertical grid 
spacing 

S1 12 km 550 m

S2 3 km 550 m

S3 3 km 325 m

S4 500 m 325 m

Barber et al. 2018 JAMC WRF: Weather Research and Forecasting model
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Midlatitude CIT
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• ε1/3

• Light to moderate turbulence

• Ellrod Index
• Resolution sensitivity

• Areal coverage of severe turbulence is 
much greater than ε1/3

• Magnitudes need to be scaled 

• Brown 1

• Locations of maximum intensity 
vary between diagnostics

Barber et al. 2018 JAMC

∆x = 500 m    z = 8 km

∆x = 500 m    z = 8 km

Ellrod Index

ε1/3

Severe

Moderate

Light
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Midlatitude CIT
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• Coarser model resolution 
distributes the most turbulence 
towards lower thresholds

• Finer vertical and horizontal 
grid spacing is needed to 
predict extreme turbulence

Barber et al. 2018 JAMC

8 km = 26 kft
10 km = 33 kft
12 km = 39 kft
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Discussion

15

• Resolution influences the distribution of turbulence
• Increased horizontal and vertical resolution is important for turbulence 

prediction
• Moderate to severe turbulence was found more than 20 mi away from 

convection
• Turbulence prediction is sensitive to convective type and dynamical 

forcing (i.e. isolated convection and mesoscale convective systems)

Barber et al. 2018 JAMC
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Conclusions

16

• More research about CIT caused by 
developing convection is needed 

• Midlatitudes and tropics

• Storm type specific FAA guidelines 
• Increase efficiency

• Can convective parameters statistically be 
used as turbulence diagnostics?

Courtesy of A. Karboski
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Extra Slides
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Tropical CIT

19

• Out-of-cloud turbulence has the 
largest areal coverage

• Most severe turbulence is out of 
cloud

• 10 km in altitude has the greatest 
likelihood of experiencing severe 
turbulence (in and out of cloud)

• Majority of turbulence is above 
cloud

Intensity →

Ar
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l C
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Model Physics

20
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Model Physics
• PBL:

• YSU- no prognostic variables, 
diagnostic- diffusivity of heat

• MYJ- prognostic variable-
TKE, diagnostic- diffusivity of 
heat, length scale

21

YSU (diagnostic scheme) imposes this profile based on diagnosed PBL height h
MYJ (prognostic scheme) tries to develop it organically by predicting TKE

(Fovell 2018)
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