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What is a Mountain Wave?

(Durran 1990)

• When Stably Stratified Air is Forced Over a Barrier a Disturbance is Created
• Energy is Carried Away by Internal Gravity Waves
• Buoyancy is the Restoring Force 
• Downward Phase Propagation  Upward Energy Propagation (Group Velocity)

• Gravity Waves May Steepen & Break 
- Nonlinearity, Critical Levels
- Decreasing Mean Density
- Breakdown via  Secondary KH Instability

(Sakai)
NCAR

Distance (40 km)

Vertical
Velocity

(Doyle et al. 2016)
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Mountain Wave Turbulence 
Climatology

Normalized PIREPS (MOG/Total)
1995-2005 (Wolff and Sharman 2008)

Percent of MOG MWT to Total PIREPs 
above FL180 (5.5 km) (12 YR)               

Wolff and Sharman (2008)

• Major source of turbulence over the western U.S. is due to MWT 
• Correlation of the normalized MOG MWT pattern is apparent with 

topographic heights greater than about 1.5 km, consistent with previous 
studies (Reiter and Foltz 1967; Nicholls 1973, Lee et al. 1984)



4

Lee Waves and Turbulence

• Mountain lee waves are generally laminar though can be turbulent occasionally
• Trapped wave generated by wave duct and flow over narrow terrain of Alps.
• Wave duct enhanced by upstream moist processes.
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• Sierra Nevada Range is well known for spectacular mountain wave phenomena and rotors  

Mountain Wave Clouds, Dust & Rotor Clouds 
From a P-38 With Engine Off (wmax~35 m s-1)
R. Symons

NOAA Archive J. Kuettner

Vertical Velocity in a Rotor at 5.1 km for 50 s Time Period

Time (sec)

20 m s-1

-20 m s-1

13 Gust Measurements > 10 m s-1
Holmboe and Klieforth 1957

Mountain Wave and Rotor Flow
Derived From Glider Measurements

• Rotor structure and characteristics were documented in several cases during SWP

w=-9.4 m s-1

w=12.5 m s-1•

•

Holmboe and Klieforth 1957

Rotors:  Sierra Wave Project

25 April 1955

• Sailplane destroyed in mid-flight during 
rotor encounter (~16Gs) at 4 km 

• Surface gusts > 25 m s-1
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Rotors: T-REX
Subrotor Vortices During the Terrain-Induced Rotor Experiment
Doppler Lidar Velocities

Doyle, Grubišić, Brown, De Wekker, Dörnbrack, Jiang, Mayor, Weissmann, 2009, JAS

COAMPS LES Simulation
2100 UTC 16 April 2007

[30 min. period, ∆x=60 m]

η Vorticity (color)
η = 0.15 s-1 (red)
η = 0.02 s-1 (gray)

Large Eddy Simulations of rotors underscores the key characteristics 
including flow separation, elevation of vortex street, and development of KH 

billows or sub-rotors downstream
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Rotors

How does the turbulence differ between hydraulic-like jump rotors and 
lee wave rotors?   

Strauss et al. (2015) 

• Medicine Bow 
Mountains during 
the NASA 
Orographic Clouds 
Experiment

• Hydraulic jump 
type of rotor

• Severe turbulence 
is encountered in 
the downdraft, with 
maximum σ2w and 
EDRw of 16.4m2s−2
and 0.77m2/3s−1
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Hydraulic Jumps and Rotors

Armi and Meyer (2011)

• Internal hydraulic jump vs. low-level wave breaking paradigms
• Characteristics of turbulence and relationship to vortex breakdown are 

important

Strauss et al. (2016) 

Hydraulic Analogue Wave Breaking / Rotor  Regime
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Measurements of low-level turbulence in rotors and wave breaking 
are rare

Strauss et al. (2015) 

Low-Level Wave Breaking
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Aircraft Observations of w

LES Wind and Vertical Velocity at 400 m 
(Terrain in Red Contours)  ∆x=150 m

SARJET (Alaska)
UW KingAir Flight Path

Low-Level Wave Breaking

• Explicit and LES modeling of wave breaking and secondary wave generation
• What observations are needed of turbulent downslope winds to constrain models?

Bond et al. (2006)
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1729Z 19 Feb 2000

• Low-level easterly flow and critical 
level (background) present.

• Sloping layers of wave overturning 
and turbulent breaking.

Critical Levels and Wave Breaking

Lane et al. 2009

COAMPS Simulation (5 km)
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Upper-Level Wave Breaking
DEEPWAVE Wave Breaking (29 June)

• Observed turbulent upper-level wave breaking (and mixing in UTLS)
• Momentum flux diagnostics (including stratosphere - middle atmos.)
• Real world complex flows (cyclones with time-dependent forcing)

FASTEX Wave Breaking

Smith et al. (2016) Doyle et al. (2005)
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Upper-Level Wave Breaking
G-V AMTM Observations (~87 km)

Eckermann et al. (2016)

DEEPWAVE G-V Flight Over
Auckland Island

Growing evidence that small islands may be important sources of 
gravity waves and upper-level turbulence

Pautet et al. 2015 (JGR)
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hm=1000 m

hm=1500 m

hm=1750 m

hm=2000 m

Spaghetti θ Mean/Variance u Mean/Variance

Bifurcation
State

Trapped Waves
Wave Breaking

MWT Predictability

• 2D ensemble initialized with a  sounding from Jan 11, 1972 Boulder windstorm
• Maximum variance (uncertainty) occurs near the wave breaking threshold (hm=1750 m)

Doyle and Reynolds (2008)
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• Explicit and LES 2D modeling of wave breaking and secondary wave generation
• Models still disagree radically for relatively simple problems (e.g., model error)

Model Intercomparison of Wave Breaking [w (m s-1)]

Doyle et al. (2011)

MWT Predictability



16

• 70-member ensemble simulation of a large-amplitude mountain wave during T-REX
• Strong-member subset: Large-amplitude breaking mountain wave with an extensive 

region of turbulent mixing directly above and to the lee of the Sierra. 
• Weak-member subset:  Wave breaking and turbulence are limited to a small region in 

the upper troposphere lower stratosphere 
• Differences in the synoptic-scale forcing are small

MWT Predictability

Reinecke and Durran (2009)

MWTMWT

Weak Members Strong Members
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• Measurements (research aircraft, PIREPS) and numerical simulations show a 
rich spectrum of responses including MWT (wave breaking) that results from 
flow over large-scale (e.g., Greenland) and complex terrain (e.g., Alps,Sierra). 

• Rotors and hydraulic jumps occur when strong downslope flow in the 
boundary layer along the lee slopes separate from the surface as a turbulent 
vortex sheet (and subrotors) creating strong turbulence.

• The predictive skill of numerical forecasts of MWT observed in nature is 
encouraging and has improved with increases in fidelity of the models.

• Ultimately, high-resolution ensemble methods that are capable of explicitly 
resolving mountain waves should be used to provide probabilistic forecasts of 
turbulence needed for aviation hazard mitigation.

Summary
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Observation Impact on                    
Mountain Wave Launching

• Adjoint highlights remote upstream 
sensitive regions important for MWs

• Adjoint (model+DA) observation impact on 
12-h forecasts during DEEPWAVE.

• Targeted dropsondes have the largest 
impact on a per observation basis.

Impact (Per Observation)

AMDAR
Sat. Winds

Radiosonde
Dropsonde

Dropsonde
AMDAR

Radiosonde
PIBAL

Sat. Winds

12 h Forecast Error Norm Reduction (J/kg)

12 h Forecast Error Norm Reduction (J/kg)

Total Impact

C. Amerault
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Lee Waves and Turbulence

Jiang, Doyle, Smith (JAS 2006);  Smith, Jiang, and Doyle (JAS 2006); Jiang, Doyle, Wang, and Smith (JAS 
2007), Jiang and Doyle (JAS 2008); Jiang, Smith, Doyle (JAS 2008)

• Mountain lee waves are generally laminar though can be turbulent occasionally
• Lee waves are sensitivite to the PBL characteristics (stable vs. convective)
• Lee wave sensitive to land surface characteristics, diurnal cycle, upstream 

conditions (stability, moisture, winds)

Vertical Velocity and Potential TemperatureDIAL Lidar (Mt. Blanc)
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Rotors
Subrotor Vortices over the Medicine Bow Mountains

Vertical VelocityHorizontal Vorticity

Horizontal Vorticity
(Filtered)

French et al. (2015) 

Unique observations of subrotor vortices over the Medicine Bow Mtns
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