WINDMAP: Weather Intelligent Navigation Data and Modeling for Aviation Planning

Jamey Jacob^{*}, Keith Brewster, Phil Chilson, Carrick Detweiluer, Brian Elbing, Nicoletta Fala, Tom Galarneau, Imraan Faruque, Adam Houston, Anders Jensen, James Pinto, Suzanne Smith, and Craig Woolsey

*Director, Unmanned Systems Research Institute Oklahoma State University jdjacob@okstate.edu

VIGILANT AEROSPACE SYSTEMS

Climavision²

Funded by the NASA University Leadership Initiative

AAM: UAS & UAM

Name	Delivery Drones		Passenger Drones	
Purpose	Moving Goods		Moving People	
Explanation	The aerial transport of goods using small and medium cargo drones in cities.		The aerial transport of people using unmanned aerial vehicles, also known as air taxis or flying cars	
Current Stage	Successfully tested. Running in Zurich, Lugano, and Raleigh. Preparing for launch in 4 more cities.		Testing (in Dallas, L.A., Singapore, and Melbourne), Certification	
Costs (planned)	5 cents per mile		\$6 USD per seat mile	
Autonomy Levels Required	Today	Future	Today	Future
	Level 3 (Conditional Automation)	Level 5 (Full Automation)	Level 2 (Partial Automation)	Level 5 (Full Automation)
Regulatory Hurdles	Operational Requirements	Platform Requirements	Operational Requirements	Platform Requirements
	BVLOS, Flying Over People, Flying at Night, Dropping Objects, Continuous Airworthiness Insurance	Airworthiness Certification	BVLOS, Flying Over People, Flying at Night, Continuous Airworthiness Insurance	Type Certification, Product Organization Approval (POA), Airworthiness Cert.
Major Players	Wing, Uber Eats, Amazon, DHL, Zipline, Matternet, Flirtey, Flytrex, Skyways, Volans-I, etc.		Aurora, Lilium, Uber, Volocopter, City Airbus, eHang, Joby Aviation, Karem, KittyHawk, XTI, etc.	
Weather	Gusts, Urban Weather, Precipitation (Icing), Shear, Wake Turbulence, IFR Conditions,			

WINDMAP: Weather Intelligent Navigation Data and Models for Aviation Planning

Background and Motivation

WINDMAP

AAM Needs and Benefits

Needs of UAS/UAM for Enhanced Weather Information

UAS Benefits in Providing Weather Observations

AAM "Nowcasting" Technology

- Nowcasting solutions rely largely on data fusion
 - Gridded numerical weather model output
 - Operational models
 - CFD & LES models
 - Sparse observations
- Improved accuracy with dense high-quality measurements
- Similar techniques can be used to forecast other impactful weather
 - Low-clouds and fog
 - Turbulent areas
 - Convective storms

Application to Urban Environments

- Lower ABL is particularly undersampled
- Utilize UAS, in perhaps symbiotic fashion, to provide additional information on kinematic and thermodynamic variables pertinent to forecasting and provide report in real-time

Observations

Current ABL Sampling Strategies

Autonomous ABL Sampling Data

Coordinated Simultaneous Observations

Daisy Ranch, 9-29-2020

6 Vehicle Autonomous Hybrid One-to-Many to 2,500' Under Part 107

Gust Response

VaTech Flight Field

Prediction

Objective: Develop methods for accurate fine scale predictions through DA, M2M and ML.

- Assimilation at high resolutions and including UAS observations
- Coupling of DA system output with building resolving LES
- Machine learning for more rapidly updating probabilistic information.
- Developing real-time UAS DA using existing infrastructure.

Ongoing Efforts

- Observation System Simulation Experiments
- Short-term thunderstorm prediction using ML/AI.
- Short-term thunderstorm prediction via UAS DA.
- Observing System Simulation Experiments @ OU
- UAS DA research using LAPSE-RATE UAS observations
- Development of a coupled UAS DA / LES system

Building Resolving Simulations: FastEddy

Brewster (NWC)

Pot. Temp error increases over time, but is minimized especially early on.

VINOMAP

NCAR – Dallas, TX Urban Simulation

Downtown Building Mask

Upstream High-Rise with Streamlines

Realtime Short-term Prediction of UAS Hazards

Icing conditions

Implementation

Integrate high fidelity weather information with flight information and planning tools

★Implement forecasting models and products in decision support tool to display aviation weather hazards

★Reformat and disseminate information in the form of DRONEREPs

★Enable observations that are helpful to and accepted by the pilot community

Reporting and Weather Aware Planning

VIGILANT AEROSPACE SYSTEMS

VAS FlightHorizon is already in field testing providing a high TRL foundation for the weather reporting component to build upon. VAS has an exclusive license to NASA algorithms.

What weather is *hazardous* to UAS?

Survey effort to solicit information from UAS operators (stakeholder thresholds)

Aircraft model simulations to identify thresholds for various weather hazards (physics thresholds)

Visualizing the Hazards

Basic thresholding to identify potentially hazardous regions

Low threshold value

High threshold value

Next Steps and Future Direction

- BVLOS testing
 - Over horizon underway
 - In clouds (CN UAS IPP)
 - Conflicted airspace
- All weather evaluation
 - Observations and performance
 - Winds
 - Rain
 - Icing
 - Scale effects
- Urban flight testing
- Forecasting sensitivities to UAS observations

SEVERE WEATHER DATA COLLECTION

URBAN FLIGHT TEST CAMPAIGN

1

Center for Precision Meteorology Workshop 2022

Workforce - Precision Meteorology is transdisciplinary research with key partners

Inclusion - Strong land grant programs involve and impact rural America

WIND-MAP

Interested in the CPM Workshop? Please message Jamey Jacob – jdjacob@okstate.edu

Contact Info:

Jamey Jacob jdjacob@okstate.edu Director, Unmanned Systems Research Institute Oklahoma State University

> facebook.com/uasweather uasweather.com & windmap.us @uasweather