# Sensors and Programs for Inflight Icing

Dr. Darrel Baumgardner Droplet Measurement Technologies

Boulder, CO

In-Flight Icing Users Technical Interchange Meeting (TIM)

Washington, DC

25-26 February 2015

### Acknowledgements

- Karl Beswick and Martin Gallagher, University of Manchester.
- Adam Durant, Satavia
- IAGOS Team

# Outline

- Instruments for routine measurements of cloud microphysical properties from commercial aircraft.
- In-Progress programs that implement cloud measurements.
- Applications of real-time cloud measurements
- Challenges

Instruments for routine measurements of cloud microphysical properties from commercial aircraft.

### The IAGOS Backscatter Cloud Probe (BCP-100)





Beswick et al., AMT, 2014

# The BCP measures the diameter of each particle and creates a size distribution of number and LWC concentration



The Backscatter Cloud Probe with Polarization Detection (BCPD) is a BCP that distinguishes liquid droplets from ice crystals and volcanic ash.



In-Progress programs that implement cloud measurements

# **Extending the Database: IAGOS - CORE**

Permanent installations in the avionic bay of A340/A330 <u>Weight:</u> 120 kg <u>Operation:</u> Continuous



Lufthansa

#### Installation aboard A340/A330

#### First flight of LH D-AIGT on 8 July 2011

www.iagos.org

Photograph by courtesy of A. Karmazin

In-service Aircraft for a Global Observing System



# IAGOS Partners



Forschungszentrum Jülich, D Coordination

Laboratoire d'Aérologie, CNRS, Toulouse, F

University of Cambridge, U.K.

Deutsches Zentrum für Luft- und Raumfahrt, Oberpfaffenhofen, D

University of Manchester, U.K.

Max-Planck-Gesellschaft, D

Karlsruhe Institute of Technology, D

Leibniz-Institut für Troposphärenforschung, Leipzig, D

Deutsche Lufthansa AG, D

AIRBUS, Bristol, UK and Toulouse, F

British Airways plc, U.K.

enviscope GmbH, Frankfurt, D



Météo France, Toulouse, F

World Meteorological Organization, Genva, CH

# **Associated Airlines**



**No North American Airlines!** 



### IAGOS Fleet (October 2013)

#### Lufthansa D-AIHE



CARIBIC since June 1997

#### **China Airlines B-18806**



CORE-2, June 2012



#### Lufthansa D-AIGT



CORE-1, July 2011

Air France F-GLZU

THE FREE PLAN

CORE-3, June 2013

......



#### Flight Trajectories from 2012-2014 4399 Flights; 20557 flight hours; 665 hours in cloud



#### From 2012-2014 Encountered 18,314 Clouds with Concentrations > 10 L<sup>-1</sup>

**Cumulative Number of Clouds** 

>50% Encountered at cruise altitude Altitude (Feet) >20% of Takeoffs and Landings encountered clouds 1250 1500 1750 2000 2250 2500 2750 3000 

#### Number of Clouds

Cloud Measurements in Context of FAR Part 25 – Appendix C Intermittent Maximum (Cumuliform Clouds) 5373 In-Cloud Events with Potential for Icing



Data for Aircraft Safety & Operational Impacts

#### High Ice Crystal Impact on Aircraft Sensors



#### High Ice Crystal Concentrations Led to the AF447 and Possibly the Air Asia Flight 8501 Accidents



# High Ice Crystal Concentrations and Sensor Anomalies are Not Isolated Phenomena.



Example from Flight from Luana, Angola to Frankfurt Flight May 18, 2012

>300,000 particles per liter, Temperature Anomaly of +35° C



Aircraft takes avoidance action but remains in cloud for nearly half an hour. Temperature measurements remain corrupted by melted ice crystals. Pitot tube corrupted, 40 kt/hr decrease in <u>indicated</u>



# In three years, five IAGOS aircraft experienced 42 anomalous events.

This is approximately 3 events per aircraft per year.



# **Future - Geographical Coverage**



# DAEDALUS Aviation hazards awareness system



- Meteorological Hazard Situational Awareness Service for the Aviation Industry
- Hazards covered include icing and volcanic ash
- Funded by European Space Agency Integrated Applications Promotion ARTES 20 Programme
- 10 month Feasibility Study starting Jan 2015 with follow-on Demonstration Project planned for late 2015
- Project to develop service around DMT BCPD cloud sensor to support real-time operational response and safety of life considerations
- Strong focus on optimising aircraft-surface data communication
- Led by Satavia Ltd., UK

#### EARTH OBS NOWCAST in situ OBS





Applications of real-time cloud measurements

# **Potential Applications**

- Complement and enhance the TAMDAR icing measurements, i.e. icing measurements can be refined with mass size distribution differentiated by liquid/ice and closure between icing and size distribution measurements improve fidelity of the information.
- Complementary information for flight crew interpretation of temperature and airspeed sensors. Presence of high ice crystal concentrations alerts flight crew to potential for sensor degradation.
- Aircraft black box information on cloud conditions?
- Information for ice mass (or volcanic ash) loading on engines.
- Complementary information to improve forecasts of Current lcing Potential (CIP)

#### Bernstein et al., 2005: Current Icing Potential: Algorithm Description and Comparison with Aircraft Observations, JAM, 44



# Challenges

- Cost of integration on aircraft (STC, Interface with satellite link, data format, etc.).
- Acceptance by aircraft industry.
- Modification of models to assimilate and utilize cloud measurement information.
- Sensor maintenance.



#### Thank you for Listening





Photo Courtesy China Airlines