

Panasonic Weather Solutions (PWS) Predicting and Reporting In-Flight Icing

In-Flight Icing Users Technical Interchange Meeting (TIM) February 25-26, 2015 Washington D.C

Panasonic Avionics Corporation

Heavy Toll – Icing Related Accidents

Colgan Air 3407 (?) 12 Feb 2009 <u>American Eagle 4187</u> 31 Oct 1994

Comair 3272 9 Jan 1997

Purpose

- Who is Panasonic Weather Solutions (PWS)
- Provide overview of Panasonic's
 "Global Weather System"
- Application to Inflight Icing...
 - Forecasts
 - Detection
 - Reporting
- Collaborate with Industry Stakeholders

Overview

- Panasonic Weather Solutions (PWS)
- Global Weather System Overview
- TAMDAR Sensor Detail
- Inflight Icing Potential Forecasts
- Colgan Air Flt 3407 accident case study
- Questions/Discussion

PWS Global Weather System

PWS FlightLink TAMDAR Sensors

Commercial Aircraft Sensor

Unmanned Aircraft Sensor

30,000-40,000

Observations per Day

Temperature **GPS** Position Humidity Altitude Pressure Time Wind Speed Icing Wind Direction Turbulence

Global Communications

- True global communications
- Bidirectional data link
 - Any equipped aircraft
 - Any altitude
 - Any location on the globe
- Low message latency (near real-time)
- Channel also available for:
 - Other payload data transmission
 - Voice calls
 - Aircraft tracking

Iridium satellite constellation (global, high availability)

Data Processing and Exploitation

- Current "Tesla" computer with 1920 compute cores
- Installing new computer with 9820 compute cores
- Hardened facility with jet fuel powered redundant backup power
- Multi-tiered data quality assurance, assimilation and distribution
- Highly sophisticated proprietary weather forecast models¹
- No other organization (civil, military, or government runs such sophisticated weather modeling algorithms)

© 2014 Panasonic Avionics Corporation. Proprietary and Confidential

Current "Tesla" Liquid Cooled Super Computer

How PWS Produces Superior Forecasts

TAMDAR Icing Detection System

- TAMDAR Currently Provides Ice/No-ice Binary Data
- Dual Redundant IR Beams
 - LED/Photodiode (PD) Pairs
 - IR Beam Strengths Inversely Related To Ice Buildup In Gap
- Icing Cycle
 - Ice Buildup Reduces Photo Diode ADC Signal
 - When Signal Strength Drops Below Threshold Icing is Reported.
 - Sensor reports ice detection at 0.02"/min accretion, but reporting value is configurable
 - Heaters Engage And Deice Probe
 - Cycle Repeats If Icing Conditions Remain

TAMDAR Ice Reporting Logic

- "L" flag: Ice detected from "D" (no ice) state. Triggers report
- "I" flag: Probe hasn't deiced and 1 minute has passed from L, I flag. Triggers report.
- "H" flag: heater is engaged. Does not trigger report.
- "C" flag: specified time from heater disengagement has not passed. Does not trigger report.
- "D" flag: No ice state (deiced)

Mounting Location for Ice Detector

- Avoid stagnant air
- Avoid thick boundary layer
- Avoid regions of turbulence
- Generally the above conditions are met towards the nose
- If these conditions are not met, water particle sorting may occur by the airstream, and ice detector may ice up faster or slower than aircraft surfaces
- Computational fluid dynamics (CFD) analysis should be performed in any case because of particle sorting effect

Ice Accretion Rate

- Currently looking into ways to output an ice accretion rate (intensity) using data from the TAMDAR Sensor.
- Ice accretion rate formula
 - W a E · m · V · n
 - *E* is the collection efficiency
 - Narrow surface = higher efficiency
 - *m* is the liquid water content (LWC)
 - *V* is the true airspeed
 - *n* is the freezing fraction (0<n<1); n=0 means no ice can form
 - In theory, an accretion type detector such as TAMDAR can calculate LWC by solving the equation for m.
- Icing Wind Tunnel Testing
 - Looking at the ADC slopes while changing the LWC values to simulate different icing intensities.
 - Initial testing has been limited but future wind tunnel testing is desired.

Ice Accretion Rate

FlightLink TAMDAR-Edge (UAS Sensor)

- Small, Light, and Low Power
- Fly on NASA Ikhana (Predator) this summer
- Developing next generation sensor capabilities
 - Accurately sense temp and humidity while deicing (heating)
 - New materials
 - Test bed for algorithm improvements
 - Icing
 - Turbulence (EDR)

Icing Potential Model

PWS Augmented Forecasts of Potential Aircraft Icing Raytheon

Icing forecasts are improved with the use of aircraft measured TAMDAR observations of temperature, humidity, and reported icing data

The 2 images show TAMDAR data from flights into/out of BUF +/- ~3h from 10 pm.

The solid triangles indicate icing, and the hollow triangles indicate icing with heaters activated.

The TAMDAR heater <u>remains</u> activated throughout the descent, so the ice accretion rate is > 0.02" / min.

TAMDAR observations around the time of the Colgan crash

TAMDAR observations around the time of the Colgan crash

The first sounding, valid 9 pm, shows a substantial layer of saturated air below 6000' between -9 and -2C -- the temperature window that most supports the existence of supercooled water.

The second sounding, valid 11:20 pm, shows the sub-0C saturated layer has dropped to 3000' and below Both soundings suggest favorable conditions for supercooled water to freeze upon airframe contact.

Questions/Discussion

Panasonic Avionics Corporation

Contact Information

Jamie Braid Senior Atmospheric Data Analyst +1 (303) 668-3226 jamie.braid@panasonic.aero

> Robert "Fusch" Fuschino Director Government Programs +1 (303) 594-6545 robert.fuschino@panasonic.aero