WRF-Hydro Forcing Engine Overview

Y. Zhang, J. Grimm, R. Cabell, D. Gochis, B. Petzke, National Center for Atmospheric Research

> G. Fall, D. Kitzmiller Office of Water Prediction

WRF-Hydro Workflow

Input Forcing Data Requirements

Variable name	Description	Units
SWDOWN	Incoming shortwave radiation	W/m ²
LWDOWN	Incoming longwave radiation	W/m ²
Q2D	Specific humidity	kg/kg
T2D	Air temperature	K
PSFC	Surface pressure	Pa
U2D	Near surface wind in the u-component	m/s
V2D	Near surface wind in the v-component	m/s
RAINRATE	Precipitation rate	mm/s or kg/m ² /s

ALL FORCING DATA IS MAPPED TO SAME GRID (based on the 'geogrid') SPECIFIED PRECIPITATION MAY HAVE HIGHER TIME RESOLUTION (e.g. 5min)

Seasonally-varying MRMS RQI

Blended MRMS-HRRR Precipitation

HRRR-RAP incoming longwave radiation

HRRR-RAP 2m Air Temperature

GFS – derived incoming shortwave radiation

General Forcing Data Engine Schematic

Universal components

Configuration Specific Processing components

- Recently recoded form ncl into Python
- Wraps FORTRAN library functions

NWM Forcing Data Engine Construction

Create national 1km gridded fields of:

 Temperature, mixing ratio, surface pressure, u-, v-windspeed, longwave and shortwave radiation, precipitation rate

2. Downscaling of:

- Temperature (NARR distributed climatological lapse rate)
- Mixing ratio (conserve RH)
- Surface pressure
- Incoming shortwave radiation (terrain slope and aspect)

2 m Air Temperature

100 C						
280	285	290	295	300	305	310

T2m Valid at 18Z Jan 1, 2009

With downscaling: left No downscaling: right Middle: differences

Result: Local adjustments to temps in a range of -6 to +8 deg C

Q2m Valid at 18Z Jan 1, 2009

With downscaling: left No downscaling: right Middle: differences

Result: Local adjustments Scan: to mixing ration in a V: range of -0.0017 to X: +0.002 kg/kg

NWM Forcing Data Engine Construction

- Medium Range Configuration
 - Downscaled GFS (incoming shortwave radiation Sept. 11, 2015 21Z)

SWDOWN Valid at 18Z Jan 1, 2009

With downscaling: left No downscaling: right Middle: differences

Result: Local adjustments to incoming SW in a range of -228 to +470 W/m^2

NWM Forcing Data Engine Construction

Create national 1km gridded fields of:

Temperature, mixing ratio, surface pressure, u-, v-windspeed, longwave and shortwave radiation, precipitation rate

2. Downscaling of:

- Temperature (NARR distributed climatological lapse rate)
- Mixing ratio (conserve RH)
- Surface pressure
- Incoming shortwave radiation (terrain slope and aspect)

- Air temperature
- Humidity
- Incoming solar radiation
- Incoming longwave radiation
- Wind speed
- Precipitation

NWM Meteorological Forcings: Bias Corrections....HRRR model

-4.2 -3.8 -3.2 -2.8 -2.2 -1.8 -1.2 -0.8 -0.2 0.2 0.8 1.2 1.8 2.2 2.8 3.2 3.8 4.2

temp bias (°C) short_range fhr009

NWM Meteorological Forcings: Bias Corrections....HRRR model

<u>SWDOWN</u> bias & correction

primary patterns

- forecast lead time
- time of day (solar angle)

$$SWDOWN_{bias} = \left(c_1 + c_2 * \frac{fhr - 1}{n_fhr - 1}\right) * \cos(\varphi_{solar}) * SWDOWN_{model}$$

SNOTEL

OBS

NWM Forcing Data Engine Construction

Create national 1km gridded fields of:

 Temperature, mixing ratio, surface pressure, u-, v-windspeed, longwave and shortwave radiation, precipitation rate

2. Downscaling of:

- Temperature (NARR distributed climatological lapse rate)
- Mixing ratio (conserve RH)
- Surface pressure
- Incoming shortwave radiation (terrain slope and aspect)

Product Layering:

Precipitation liquid/frozen fraction:

RA

MIX

SN

NWM PTYPE

MRMS also producing experimental precipitation type (frozen/liquid) product

NWM Operational Cycles

	Cycling	Forecast	Met Forcing	Outputs
ANALYSIS	Hourly	-3 - 0 hrs	MRMS QPE	1-km spatial fluxes (water & energy); 250-m routed fluxes (water); NHDPlus channel routing
SHORT-RANGE	Hourly	1 – 18 hrs	Downscaled HRRR/RAP Blend	1-km spatial fluxes (water & energy); 250-m routed fluxes (water); NHDPlus channel routing
MEDIUMERANCE	4x Daily	to 10 days	Downscaled GFS	1-km spatial fluxes (water & energy); 250-m routed fluxes (water); NHDPlus channel routing
LONG-RANGE	Daily x 16 ensembles	to 30 days	Downscaled & NLDAS2 Bias- Corrected CFS	1-km spatial fluxes (water & energy); NHDPlus channel routing

NWM Meteorological Forcing Engine (MFE)

1. Create national 1km gridded fields of:

- Temperature, mixing ratio, surface pressure, u-, v-windspeed, longwave and shortwave radiation, precipitation rate
- 2. Terrain Downscaling of:
 - Temperature (NARR distributed climatological lapse rate)
 - Mixing ratio (conserve RH)
 - Surface pressure
 - Incoming shortwave radiation (terrain slope and aspect)
 - Rain-snow portioning (in development)
 - Wind (in development)
- 3. Statistical Bias Correction
- 4. Open source ncl/bash scripted workflow utilizing ESMF regridding tools
- 5. Multi-thread job, scales almost linearly because there is no memory sharing across processors (1-d calculations)

Seasonally-varying MRMS RQI

HRRR-RAP 2m Air Temperature

Blended MRMS-HRRR Precipitation

GFS - derived incoming shortwave radiation

Developed by Linlin Pan and Wei Yu with contributions from D. Kitzmiller, G. Fall, A. RafieeiNasab

Questions?

